Team Updates

def fis_data_to_dataframe(fis_data):
""" Creates a DataFrame from list of FIS responses
"""
COLUMNS = ['channel', 'date', 'min', 'max', 'mean', 'stDev']
data = []
for fis_response in fis_data:
for channel, channel_stats in fis_response.items():
for stat in channel_stats:
row = [int(channel[1:]), parse_time(stat['date'], force_datetime=True)]
for column in COLUMNS[2:]:
row.append(stat['basicStats'][column])
data.append(row)
return pd.DataFrame(data, columns=COLUMNS).sort_values(['channel', 'date'])
df = fis_data_to_dataframe(fis_data)
df.head()
vanowarnaVANODHYA WARNASOORIYA
def remove_outlier(df_in, col_name):
q1 = df_in[col_name].quantile(0.25)
q3 = df_in[col_name].quantile(0.75)
iqr = q3-q1 #Interquartile range
fence_low = q1-1.5*iqr
fence_high = q3+1.5*iqr
df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
return df_out
suvinkSuvin Nimnaka